A q-analog of Euler's decomposition formula for the double zeta function
نویسنده
چکیده
The double zeta function was first studied by Euler in response to a letter from Goldbach in 1742. One of Euler’s results for this function is a decomposition formula, which expresses the product of two values of the Riemann zeta function as a finite sum of double zeta values involving binomial coefficients. Here, we establish a q-analog of Euler’s decomposition formula. More specifically, we show that Euler’s decomposition formula can be extended to what might be referred to as a “double q-zeta function” in such a way that Euler’s formula is recovered in the limit as q tends to 1.
منابع مشابه
ON THE SUM FORMULA FOR MULTIPLE q-ZETA VALUES
Abstract. Multiple q-zeta values are a 1-parameter generalization (in fact, a q-analog) of the multiple harmonic sums commonly referred to as multiple zeta values. These latter are obtained from the multiple q-zeta values in the limit as q → 1. Here, we discuss the sum formula for multiple q-zeta values, and provide a self-contained proof. As a consequence, we also derive a q-analog of Euler’s ...
متن کاملA q-analog of Euler’s reduction formula for the double zeta function
The double zeta function is a function of two arguments defined by a double Dirichlet series, and was first studied by Euler in response to a letter from Goldbach in 1742. By calculating many examples, Euler inferred a closed form evaluation of the double zeta function in terms of values of the Riemann zeta function, in the case when the two arguments are positive integers with opposite parity....
متن کامل6 F eb 2 00 4 MULTIPLE q - ZETA VALUES
We introduce a q-analog of the multiple harmonic series commonly referred to as multiple zeta values. The multiple q-zeta values satisfy a q-stuffle multiplication rule analogous to the stuffle multiplication rule arising from the series representation of ordinary multiple zeta values. Additionally, multiple q-zeta values can be viewed as special values of the multiple q-polylogarithm, which ad...
متن کاملMultiple q-zeta values
We introduce a q-analog of the multiple harmonic series commonly referred to as multiple zeta values. The multiple q-zeta values satisfy a q-stuffle multiplication rule analogous to the stuffle multiplication rule arising from the series representation of ordinary multiple zeta values. Additionally, multiple q-zeta values can be viewed as special values of the multiple q-polylogarithm, which ad...
متن کاملA Signed Analog of Euler’s Reduction Formula for the Double Zeta Function
The double zeta function is a function of two arguments defined by a double Dirichlet series, and was first studied by Euler in response to a letter from Goldbach in 1742. By calculating many examples, Euler inferred a closed form evaluation of the double zeta function in terms of values of the Riemann zeta function, in the case when the two arguments are positive integers with opposite parity....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Math. Mathematical Sciences
دوره 2005 شماره
صفحات -
تاریخ انتشار 2005